A fast method for the implementation of common vector approach
نویسندگان
چکیده
In this paper a novel computation method is proposed to perform the common vector approach (CVA) faster than its conventional implementation in pattern recognition. While conventional CVA calculations perform the classification with respect to the distance between vectors, the new method performs the classification using scalars. A theoretical proof of the equivalence of the proposed method is provided. Next, in order to verify the numerical equivalence of the proposed computation method to the conventional (vectorbased) method, numerical experiments are conducted over three different face databases, namely the AR Database, extended Yale Face Database B, and FERET Database. Since the computational gain may depend on (i) the dimension of the feature vectors, (ii) the number of feature vectors used in training, and (iii) the number of classes, the effects of these items are clearly verified via these databases. Our theoretically equivalent (but faster) method provided no difference in the classification rates despite its improved classification speed as compared to the classical implementation of CVA. The new method is found to be about 2.1–3.0 times faster than the conventional CVA implementation for the AR face database, 1.9–3.3 times faster for the extended Yale Face Database B, and 1.9–3.1 times faster for the FERET Database. 2010 Elsevier Inc. All rights reserved.
منابع مشابه
Fast Cellular Automata Implementation on Graphic Processor Unit (GPU) for Salt and Pepper Noise Removal
Noise removal operation is commonly applied as pre-processing step before subsequent image processing tasks due to the occurrence of noise during acquisition or transmission process. A common problem in imaging systems by using CMOS or CCD sensors is appearance of the salt and pepper noise. This paper presents Cellular Automata (CA) framework for noise removal of distorted image by the salt an...
متن کاملFast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets
Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...
متن کاملSpace Vector Modulation Based on Classification Method in Three-Phase Multi-Level Voltage Source Inverters
Pulse Width Modulation (PWM) techniques are commonly used to control the output voltage and current of DC to AC converters. Space Vector Modulation (SVM), of all PWM methods, has attracted attention because of its simplicity and desired properties in digital control of Three-Phase inverters. The main drawback of this PWM technique is 
its complex and time-consuming computations in real-time ...
متن کاملSpace Vector Modulation Based on Classification Method in Three-Phase Multi-Level Voltage Source Inverters
Pulse Width Modulation (PWM) techniques are commonly used to control the output voltage and current of DC to AC converters. Space Vector Modulation (SVM), of all PWM methods, has attracted attention because of its simplicity and desired properties in digital control of Three-Phase inverters. The main drawback of this PWM technique is its complex and time-consuming computations in real-time im...
متن کاملMarkovian Delay Prediction-Based Control of Networked Systems
A new Markov-based method for real time prediction of network transmission time delays is introduced. The method considers a Multi-Layer Perceptron (MLP) neural model for the transmission network, where the number of neurons in the input layer is minimized so that the required calculations are reduced and the method can be implemented in the real-time. For this purpose, the Markov process order...
متن کاملA Fast and Accurate Expansion-Iterative Method for Solving Second Kind Volterra Integral Equations
This article proposes a fast and accurate expansion-iterative method for solving second kind linear Volterra integral equations. The method is based on a special representation of vector forms of triangular functions (TFs) and their operational matrix of integration. By using this approach, solving the integral equation reduces to solve a recurrence relation. The approximate solution of integra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Sci.
دوره 180 شماره
صفحات -
تاریخ انتشار 2010